Deep Learning from Noisy Image Labels with Quality Embedding

نویسندگان

  • Jiangchao Yao
  • Jiajie Wang
  • Ivor W. Tsang
  • Ya Zhang
  • Jun Sun
  • Chengqi Zhang
  • Rui Zhang
چکیده

There is an emerging trend to leverage noisy image datasets in many visual recognition tasks. However, the label noise among the datasets severely degenerates the performance of deep learning approaches. Recently, one mainstream is to introduce the latent label to handle label noise, which has shown promising improvement in the network designs. Nevertheless, the mismatch between latent labels and noisy labels still affects the predictions in such methods. To address this issue, we propose a quality embedding model, which explicitly introduces a quality variable to represent the trustworthiness of noisy labels. Our key idea is to identify the mismatch between the latent and noisy labels by embedding the quality variables into different subspaces, which effectively minimizes the noise effect. At the same time, the highquality labels is still able to be applied for training. To instantiate the model, we further propose a Contrastive-Additive Noise network (CAN), which consists of two important layers: (1) the contrastive layer estimates the quality variable in the embedding space to reduce noise effect; and (2) the additive layer aggregates the prior predictions and noisy labels as the posterior to train the classifier. Moreover, to tackle the optimization difficulty, we deduce an SGD algorithm with the reparameterization tricks, which makes our method scalable to big data. We conduct the experimental evaluation of the proposed method over a range of noisy image datasets. Comprehensive results have demonstrated CAN outperforms the state-of-the-art deep learning approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks

Collecting large training datasets, annotated with high-quality labels, is costly and time-consuming. This paper proposes a novel framework for training deep convolutional neural networks from noisy labeled datasets that can be obtained cheaply. The problem is formulated using an undirected graphical model that represents the relationship between noisy and clean labels, trained in a semisupervi...

متن کامل

Joint Optimization Framework for Learning with Noisy Labels

Deep neural networks (DNNs) trained on large-scale datasets have exhibited significant performance in image classification. Many large-scale datasets are collected from websites, however they tend to contain inaccurate labels that are termed as noisy labels. Training on such noisy labeled datasets causes performance degradation because DNNs easily overfit to noisy labels. To overcome this probl...

متن کامل

A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels

The recent success of deep neural networks is powered in part by large-scale well-labeled training data. However, it is a daunting task to laboriously annotate an ImageNet-like dateset. On the contrary, it is fairly convenient, fast, and cheap to collect training images from the Web along with their noisy labels. This signifies the need of alternative approaches to training deep neural networks...

متن کامل

Deep metric learning for multi-labelled radiographs

Many radiological studies can reveal the presence of several co-existing abnormalities, each one represented by a distinct visual pattern. In this article we address the problem of learning a distance metric for plain radiographs that captures a notion of “radiological similarity”: two chest radiographs are considered to be similar if they share similar abnormalities. Deep convolutional neural ...

متن کامل

Iterative Learning with Open-set Noisy Labels

Large-scale datasets possessing clean label annotations are crucial for training Convolutional Neural Networks (CNNs). However, labeling large-scale data can be very costly and error-prone, and even high-quality datasets are likely to contain noisy (incorrect) labels. Existing works usually employ a closed-set assumption, whereby the samples associated with noisy labels possess a true class con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.00583  شماره 

صفحات  -

تاریخ انتشار 2017